

Greening research infrastructure

Session 16 | Great room 3 | 2.00-2.55PM

smarter SUPERCOMPUTING solar panels in the walls and Dual-skin facade of the building Building provides effective insulation electricity generated to offset 4 Carbon footprint saving 495kg of CO2 per day Geothermal COOLING photo voltaic panels CSIRO-developed solution saving up to 7 million installed on the roof 367 litres of water a year smart Builbing NEW SUPER-

Design and engineering – Sustainable power – Optimised use

COMPUTER

energy efficiency and computing power

chosen for its

Integrated Sustainable Design Review

- Hydrogen Power System Feasibility Study
- Stygofauna Analysis Mullaloo Aquifer
- Decadal Review of Ground Water Cooling System
- Vibration and EMF Monitoring and Assessment
- Thermal Battery Technology

Energy-based Accounting Model for Heterogeneous Supercomputers

has real-time monitoring

which facilitates efficient

energy use

Cristian Di Pietrantonio, Christopher Harris and Maciei Cytowski

GreenDIGIT Project for Greening Future Digital Research Infrastructures

Yuri Demchenko GreenDIGIT Project, University of Amsterdam

ICRI2024 Session/Panel "Greening Research Infrastructures" 4 December 2024

GreenDIGIT Project for Greenng Future DIgital RI

GreenDIGIT Project: Founding Digital RIs (ESFRI)

- EBRAINS An open research infrastructure that gathers data, tools and computing facilities for brain-related research
- EGI International federation delivering e-Infrastructure and open solutions for advanced computing and data analytics in research and innovation
- **SLICES** Scientific Large-scale Infrastructure for Computing and Communication Experimental Studies
- SoBigData Distributed, Pan-European, multi-disciplinary research infrastructure aimed at using social mining and Big Data to understand the complexity of our contemporary, globally interconnected society

Sustainability Aspects: Energy Efficiency – Decarbonisation – Environmental Impact

- Energy Efficiency in Digital Infrastructures:
 - **Definition**: This refers to optimizing digital infrastructures to consume as little energy as possible for a given workload or service. It's about achieving more computational or storage results with less energy input.
- Decarbonization of Digital Infrastructures:
 - **Definition**: This specifically targets the reduction of carbon emissions associated with the operation and maintenance of digital infrastructures.
- Reducing Environmental Impact of Digital Infrastructures:
 - **Definition**: This is a more comprehensive consideration of the various ways digital infrastructures might affect the environment, going beyond just energy consumption and carbon emissions.

Architecture, Design, Recommendations

Operation, Monitoring, KPI

Lifecycle, Policy, Training

GreenDIGIT project (2024-2027) – Objectives

- **O1: Assess the status and trends** of low impact computing within 4 DIGIT RIs (EGI, SLICES, SoBigData, EBRAINS) and wider ESFRI community, to produce **recommendations and roadmaps** for RIs green transition.
- **O2: Provide reference architecture and design principles**, reflecting on the **whole RI lifecycle** and including the digital infrastructure components.
- **O3: Develop new and innovative technologies, methods, and tools** for digital service providers within European Research Infrastructures.
- **O4: Develop and provide for researchers the tools** to support the design and execution of environmental sustainability aware scientific applications with Open Science and FAIR data management considerations.
- **O5: Educate and support RI service providers and researchers** about good practices on environmental impact conscious lifecycle management and operation of infrastructures and services.

סובכווטוסוו דוסןכנדוסו סובכווווא דענעוב טואונמדאו

ICRI2024, 2-6 Dec 2024, Brisbane

ICRI2024, 2-6 Dec 2024, Brisbane

RI Sustainability by Design Components/Aspects

Dev Tools.

IDE/SDK,

Advice/

Assess

Control, Mngnt

Network

Storage

- Architecture for Sustainability by Design
 - Functional components, layers, API, ٠ Requirements
- Software and application components that can be optimised during design and controlled during operation
 - Green aware API including necessary energy, • performance, environment information
- Common information/data model and metadata (naming)
 - Including Requirements, KPI, Metrics + FAIR
- **RI and applications lifecycle**
 - RI lifecycle stages (concept, design, • development, deployment, operation, decommissioning) and scientific workflow and research data

Compute

Discussion Topics to Facilitate Environmental Sustainability

- Energy efficiency on/of Research Infrastructure/Research Environment
 - Environmental Sustainability and emerging GenAI/LLM powered science
- Shared Responsibility in Environmental Sustainability
- Research community cooperation and contribution for targeting and achieving environmental sustainability
 - Joint workshops and events are an effective way to go

US National Science Foundation (NSF) Research Infrastructure

- NSF supports many types of Research Infrastructure (RI) across the globe with varied energy consumption and environmental considerations
 - Some of the RI is simply energy hungry, such as the computing RI or the particle accelerators (for example, CERN's energy consumption is up to ~1.3 TWh/year, with the Large Hadron Collider (LHC) accounting for 55% of the total consumption.)
 - Some of the RI is in hard-to-reach and/or delicate environments, such as mountain-peak astronomical observatories or the Antarctic facilities.
- Both environmental and cost-ofoperation factors are considered when RI is being developed or upgraded

Few General Considerations / Discussion Points

- Science funding agencies, such as NSF, generally do not set the environmental or energy policy
 - NSF's actions at any given time have to be consistent with the policies set elsewhere in the US
 government
 - For RI located outside of the US, the local regulations also apply
 - NSF's funding decision are heavily driven by the scientific community priorities via the "gold standard" peer merit review process
- The time scales associated with the expected lifecycle of large scale RIs can exceed the timescale of both national political cycles and novel technology development
 - Individual RI's operational sustainability plan, or ability to maintain particular practices and priorities through its lifecycle, should account for the potential social and technological environment changes
 - Lower cost-of-operation per unit of science delivered is likely to be welcomed by any taxpayer everywhere
- Evolution of scientific community's practices can be driven by both mandates and incentives
 - Incentives (as opposed to mandates) may provide a more organic, and thus more sustainable, evolution pathway with fewer unintended side effects

Amazon Carbon-free energy goal

500+

Global renewable energy projects (as of Jan 2024)

Gigawatts of total renewable capacity (as of Jan 2024)

28+

100%

Renewable energy reached across our business in 2023

A more sustainable future, together

The Amazon Sustainability Exchange provides free, publicly available information that democratizes our guidelines, playbooks, scientific models, and other resources to help others make meaningful progress toward a net-zero carbon future.

"We know that driving change means staying focused on bringing entire industries along with us."

-Kara Hurst, Amazon Chief Sustainability Officer

Focus Areas

Buildings

Carbon neutralization

Carbon-free energy

Human rights

Transportation

Waste & circularity

Water stewardship

Explore the exchange: <u>https://exchange.aboutamazon.com/</u>

A data-driven approach to sustainability strategy, enabled by cloud computing

Sustainability **OF** the cloud

Sustainability IN the cloud

Sustainability THROUGH the cloud

Delivering a sustainable IT fleet – taking advantage of the cloud and AWS efficiency Optimizing workloads on AWS with the Sustainability pillar of the Well-Architected Framework

Deploying cloud-based solutions and advisory support to accelerate sustainability objectives

